Characterization of molecular recognition features, MoRFs, and their binding partners.
نویسندگان
چکیده
Molecular Recognition Features (MoRFs) are short, interaction-prone segments of protein disorder that undergo disorder-to-order transitions upon specific binding, representing a specific class of intrinsically disordered regions that exhibit molecular recognition and binding functions. MoRFs are common in various proteomes and occupy a unique structural and functional niche in which function is a direct consequence of intrinsic disorder. Example MoRFs collected from the Protein Data Bank (PDB) have been divided into three subtypes according to their structures in the bound state: alpha-MoRFs form alpha-helices, beta-MoRFs form beta-strands, and iota-MoRFs form structures without a regular pattern of backbone hydrogen bonds. These example MoRFs were indicated to be intrinsically disordered in the absence of their binding partners by several criteria. In this study, we used several geometric and physiochemical criteria to examine the properties of 62 alpha-, 20 beta-, and 176 iota-MoRF complex structures. Interface residues were examined by calculating differences in accessible surface area between the complex and isolated monomers. The compositions and physiochemical properties of MoRF and MoRF partner interface residues were compared to the interface residues of homodimers, heterodimers, and antigen-antibody complexes. Our analysis indicates that there are significant differences in residue composition and several geometric and physicochemical properties that can be used to discriminate, with a high degree of accuracy, between various interfaces in protein interaction data sets. Implications of these findings for the development of MoRF-partner interaction predictors are discussed. In addition, structural changes upon MoRF-to-partner complex formation were examined for several illustrative examples.
منابع مشابه
Molecular recognition features (MoRFs) in three domains of life.
Intrinsically disordered proteins and protein regions offer numerous advantages in the context of protein-protein interactions when compared to the structured proteins and domains. These advantages include ability to interact with multiple partners, to fold into different conformations when bound to different partners, and to undergo disorder-to-order transitions concomitant with their function...
متن کاملmpMoRFsDB: a database of molecular recognition features in membrane proteins
SUMMARY Molecular recognition features (MoRFs) are small, intrinsically disordered regions in proteins that undergo a disorder-to-order transition on binding to their partners. MoRFs are involved in protein-protein interactions and may function as the initial step in molecular recognition. The aim of this work was to collect, organize and store all membrane proteins that contain MoRFs. Membrane...
متن کاملAnalysis of molecular recognition features (MoRFs).
Several proteomic studies in the last decade revealed that many proteins are either completely disordered or possess long structurally flexible regions. Many such regions were shown to be of functional importance, often allowing a protein to interact with a large number of diverse partners. Parallel to these findings, during the last five years structural bioinformatics has produced an explosio...
متن کاملRetro-MoRFs: Identifying Protein Binding Sites by Normal and Reverse Alignment and Intrinsic Disorder Prediction
Many cell functions in all living organisms rely on protein-based molecular recognition involving disorder-to-order transitions upon binding by molecular recognition features (MoRFs). A well accepted computational tool for identifying likely protein-protein interactions is sequence alignment. In this paper, we propose the combination of sequence alignment and disorder prediction as a tool to im...
متن کاملGRAS proteins: the versatile roles of intrinsically disordered proteins in plant signalling.
IDPs (intrinsically disordered proteins) are highly abundant in eukaryotic proteomes and important for cellular functions, especially in cell signalling and transcriptional regulation. An IDR (intrinsically disordered region) within an IDP often undergoes disorder-to-order transitions upon binding to various partners, allowing an IDP to recognize and bind different partners at various binding i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2007